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In view of the complexity of spatial, significantly three-dimensional problems, it ap- 
pears justified to switch from a three-dimensional to two-dimensional mathematical model of the 
flow. The reduction of the three dimensional initial-boundary value problem for the Stokes 
system to successive two-dimensional problems were discussed in [I]. 

The study of the dynamics of viscous fluid at low and moderate Reynolds numbers is 
mainly related to internal flows: channel flows with plane parallel walls with sudden ex- 
pansion in channel cross-section, propagation of viscous jets in space heated by the same 
fluid, and also problems with heat convection. It is known [2] that the general steady-state, 
nonlinear Navier--Stokes equations have at least one laminar solution at any Reynolds number 
if, for each isolated component S k of the boundary S in region ~ filled with fluid, the fol- 
lowing condition is satisfied: 

S VndS -~ O. 
8h 

For a finite region and low Reynolds numbers the solution to the problem is unique and stable. 
Hence it is of great interest to study the case of high Reynoldsnumberswhenthe fl0w is still 
laminar. 

Consider an incompressible, viscous jet between two plane parallel plates with the ap- 
proximation [3] when the distance between them (2h) is much smaller than the basic dimensions 
(L and 6) of the problem; for the "narrow" jet h could be comparable to 6. 

Approximate solution to the Navier--Stokes equation is written in the form 

u = u,~(x, y ,  t ) l (z /h) ,  v = v,~(x, y,  t ) l (z /h) ,  

w = w,~(x, y ,  t )~(z /h) ,  p = pro(x, y ,  z, t) ,  

i n  t h e  s t e a d y - s t a t e  c a s e  3 u / 3 t  = 0;  t h e n  

u = urn(x, y ) l ( z /h) ,  . = Vm(X, y) l (z /h) ,  (~) 
w = win(x, g)~(z/h) ,  p = pm~x, g, z), 

where  f and ~ a r e  f u n c t i o n s  of  t h e  d i s t a n c e  b e t w e e n  p l a t e s .  The s o l u t i o n  t o  N a v i e r - - S t o k e s  
equations is expressed in the form of parabolic distribution of Poiseuille flow. In turbulent 
flow the velocity profile could have the exponential relation 

u = um(z/h)i/~," v = vm(z/h) l/k, w = w ~ ( z / h ) ,  p ---- pro(x, y,  z). 

The i n t e g r a t i o n  of  t h e  N a v i e r - - S t o k e s  e q u a t i o n s  i s  c a r r i e d  ou t  a l o n g  t h e  v e r t i c a l  c o o r -  
d i n a t e  z w i t h  c o n s t a n t  i n t e r v a l s  f r o m - - h  t o  h a c c o r d i n g  t o  t h e  r e l a t i o n s  

h h h 

< u > = ~ i  udz, < e > = N  vdz,  < w > = - ~  wdz.  
--h --4 --h 

C a r t e s i a n  c o o r d i n a t e s  a r e  u s e d  w i t h  t h e  o r i g i n  a t  t h e  c e n t e r  b e t w e e n  t h e  two p l a t e s ,  
x and y a x e s  a r e  i n  t h e  p l a n e  p a r a l l e l  t o  t h e  p l a t e s ,  and t h e  a x i s  z i s  p e r p e n d i c u l a r  t o  t h e  
l a t t e r  ( F i g .  1). 

We have  t h e  s y s t e m  

 x[2h + + Lu  [2h <u>1 + 
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~ [2h<uu>] -F [2h<v~>]+ ~=~ i a [2h<p>] + v [2h<v>] + [2h<v>] + ,- 

a [2h <wv}] + t j~=-a = - -  ~-  [p]~-~-h + v ~ [2h <w>] -t- ~ [2h <w>] + [az]~=-h]' a [2h <wu>] § -~ (2) 

z = h  �9 
o [ 2 h < v > l + [ w l ~ - - h = O .  [2h <u>] + 

After the substitution of profiles (I) 
following system of equations of motion and 

aura au.~ 15 ap 
u ~ . - ~  + Vm ay 8p ax 

OVm arm t5 Op 
um ~ "4- vm ag 8p ay 

in integrals for the steady-state flow we get the 
continuity : 

5 (02urn a2U,n~ t5v 
+ ~ - ~ \  ox ~ + -~-y~ / - ~  ~ ,  

q- "T v \ ~ -b aY 2 ] 4h"~ ~m,: 

T T [ p ] : = ~ - ~  + ~ , - ~ - f +  aye] + wm[~cp(z/h)]~=_~,: 

Ovm z-=h 
+ w~ [~p (z/h)],=-~ = O. 

thecondition for the function Wm(X , y) = const, 

(OW m ~ @ w  m 

[q~ ( I )h=-h U m ~ + ~ ' m ~ + W ~  z h  ~=h = - -  

8u m ~---~- + 

Assuming 3Wm/3X = 0, 3Wm/3y = 0 and 
is possible to put 

w.~ = o, w = w.~(p(z/h) = O, p = p.~(x, y).  

The system of equations (3) with condition (4) takes the form 

~+vm~-~=-T-~ 4a,LkO~ ~ + a - - ~ /  

o Ov~ o Ov~ L t5 ~ ap ~ L 5 O v,~ 

u~ 0 7  + v~ ~ ~ ~ - -  - T ~ ~ - ~  + ~ ~ + oyO~ 8~ ] 

iSL" u~ 
z~  ReL~ 

15L2 v~ 
4h ~ Re L' 

o ~  L 0 4  
+-f-- = 0, ax ay o 

(3) 

i t  

(4) 

(5) 

u ~ = u ~ V ,  v ~ = v ~ V ,  x = x ~  y=yO6 ,  p=p lpO=EpV~pO.  

Here, E = pl/ov2 is the Euler number; Re L = LV/v is the Reynolds number; (L2/h 2 , L2/6 2 , L/a) 
are internal geometrical simplexes. If the jet is "narrow," 6 ~L and 5 is of the same order 
as h, then it is possible to assume that the following system of equations is correct within 
the boundary-layer approximations: 

aura OUm i5 ap 5 a2urn i5v 
um --~ + vm aT = - -  8T ax + T v - -  �9 ag 2 4h 2 Urn, 

ap 2p, OUm arm 
av h 2 v,~, 7 7 + T y  = 0 "  

(6) 

In the region of intermediate asymptotes, when h < d ~ L, the boundary-layer phenomenon 
as a region of large gradients in functions occurs within narrow zones near the parts of the 
boundary where there is a difference between the number of boundary conditions in the basic 
system of equations and the singular problem (when the small parameter is zero), and in our 
case this term is (5v/4)~2Um/3y 2. 
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The method of integral relations along with approximate methods [4] using polynomial 
approximation for shear stress and approximation for pressure were used to complete jet char- 
acteristics. The shear stress profile in the jet is given in the form of a polynomial 

3 

T = ~l, A~y(i-1) = A a + Aeg + A~g ~, 
i = 1  

whose coefficients are determined from boundary conditions at the jet axis y = 0 and at its 
boundaries. In view of symmetry we have 

then 

- r = 0  for g-----0, A I = 0 ;  

----0 for g = 6, A 2 - - - - - - A a 6 ,  

-~ -= A.~g + A a f  -~ A2(g -- f / 5 )  =- A~601 -- ~12), ~l ---- y/6.  (7) 

The e x p r e s s i o n  (7)  f o r  t h e  s h e a r  s t r e s s e s  p r o f i l e  makes  i t  p o s s i b l e  t o  c l o s e  t h e  p r o b l e m  
and  determine the velocity profile in the jet: 

Ou m A26 
au - -F (q'~f)" (8) 

After integrating (8), when the constant of integration C is found from conditions on the 
axis u m = Umm at y = 0, we have 

(urn - u ~ )  = ~ ~ , _ ,  ~ = T "  

At t h e  j e t  b o u n d a r y  y = 5,  ~] = 1, and  t h e  v e l o c i t y  Um = 0 .  
the polynomial coefficient 

6~ 
A2 = 6--~. u~m. ( 1 O) 

Simultaneous solution of Eqs. (9) and (10) gives the velocity profile 

F (~) = ua (i -- 3~12 + 2~13). ( ~ i ) 

(9) 

From (9) we find that when ~ = I 

The coefficient A2 may be determined from the equations of motion and Eq. (10) in the 
form 

[ ] 6~ 4 durum" 3dp[  . 3~m.~"  
0"~ = A~ = - -  -~ -  umr~ = -if" pumm -- - - f i t  + ~ In=0 + - -  

Y = 0  t~ ~ '~ 

which leads to an expression for the pressure gradient 

- -  t5 u,~,~---$7---x + 2~u.~,~ ~ h ~ .t ( 1 2 )  

Pressure p is approximated by the following conditions on the jet axis: p = Pm at y = 0, 
3p/3y = 0 at y = 0, since Vmm = 0. At the jet boundary p = Pl when y = 6, where Pl = const. 
Consider the polynomial 

3 

p =  ~ Big  (~-I) = B l + B2y ~ + B~y 3, 

whose coefficients are determined according to the given conditions. Then 

P = P , ~  + (P~ - -  P,~)~I ~, 1"1 = y/6  (13)  

with 

BI = p~, B3 = (pl--pm)/8 2, B2 = O. 

Using the equation for nondimensional velocity profile (11) and Eq. (13) for pressure 
we integrate the first of the basic equations of motion (6) across the jet from the axis of 
the free jet to the outer boundary, from y = 0 to y = 6, taking into consideration that the 
transverse velocity v m = 0 on the jet axis. The first integral relation is obtained in the 
form 

2 
35 ax s ~ [umm6] + ~ ~ x  [0 (Pl - -  Pro)l- (14) 
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Multiplying the terms of the first of Eqs. (6) by u m and integrating across the jet along y, 
we have the second integral relation 

~$ O [U3mm~] 39 V 2 ~ VU~mra 13 O(Pl--Pm) ummd~ 
280 0x -- 28 ~ [Umm ] 45 -t- T@- 5Umm Ox -]- ~ (P l - -  Pro). (15)  

The first integral relation for the second equation in the given system (6)is written 
in the form 

d~ ~0 + -U  5U~n,. d,, 5" ( 1 6) 

The system of Eqs. (12), (14)-(16) is solved simultaneously. After the substitution of 
relations for the pressure difference (pl --Pm) and the derivative of pressure difference 
d(pz --pm)/dx in the first and second-order integral relations (15) and (14) obtained from 
the first equation of motion and after carrying out a few simple transformations, we get a 
system of two ordinary first-order differential equations 

dx -~ + - - B ,  

durum d8 t t l t  v2800 t50v (17)  
dx = - -  12mm dx 6 17 -I- ~ -t- tTh-'-"T, 

7.49.400v2h 2 -[- Umrnhat20 @ 49. t50v252 , B =  3080h~7+t358~ 
2t.70952 

where A = 
7. 709vh2umm 6 

nonlinear differential equations with given initial conditions, i.e., to a Cauchy problem. 

Taking the relation durum durum d8 into account the system (17) is expressed in the form 
dx d6 dx 

durum Umm t i t  v2800 150v 
d5 b t7 ~- 6217F (6) -I- 17h.}_F (5) ' ( 18) 

F(5) = T  + ]// - - B .  

This system leads to the solution of 

There are stable numerical methods with high-order approximations [3] to solve the Cauchy 
problem. 

The equation for pressure differences (Pl -- Pm) is transformed to the following form 
using the second equation of the system (17) 

( P l " P m )  _ i70h 27095 &U,nm _~T:c+.._~_vd6 gtv ~i05_.~..+ ~v!i ~ 35.56i7 " 

With an accuracy up to the constant Pl = const the pressure at the jet axis could be 
computed using this equation along with Eqs. (17) and (18). It is possible to compute the 
gradient of pressure differences (12) on the jet axis in a similar manner. 

Transverse similarity profiles are shown in Figs. 2-4. Curves I; I, 2; and I-3 corre- 
spond, respectively, to Re = Umm2h/v = 130; 300; and 3300. 

Figure 5 shows results computed with four-step, fourth-order, explicit Runge--Kutta 
scheme for streamwise velocity profiles on the axis of the free jet that expands downstream 
(curves I, 3, and 5). 

V. D. Zhak carried out experiments at the laboratory of the Institute of Technical Phys- 
ics, Siberian Branch of the Academy of Sciences of the USSR, on a model with characteristic 
dimensions [L x = 340 mm, Ly = 200 mm, 2h = 1.25 mm, slot width ~ = 6 mm, nozzle length L s = 
80 mm (see Fig. I)] to measure velocity profiles in a hot jet. Similarity in the measure- 
ments of transverse velocity profiles (see Figs 2-4) along the coordinate axes Umm/U~ (U~m 
is the nozzle exit velocity) and along the abscissa y' = y/g is well established, and in par- 
ticular, at nondimensional x' = x/L, respectively, for Re = 130; 300; and 3300, x' = 1,7 
(point I), x' = 6.7 (point II), and x' = 1.5 (point III). 

The theoretical transverse similarity profile is determined in coordinates F(n), D = 
y/6. For streamwise similarity profiles near the origin of the coordinate system we observe 
an asymptotic increase in velocity profile (u' + ~ as x' + 0). 
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At certain distance from the origin, increasing with Reynolds number, the similarity is 
confirmed by experimental data (Fig. 5, where curves I, 2, and point I correspond to Re = 
130; 3, 4 and point II correspond to Re = 300; 5, 6 and point III correspond to Re = 3300). 

A streamwise velocity profile for plane hot jet issuing from a narrow slot into an un- 
bounded region [I] is also shown in Fig. 5 (curves 2, 4, and 6). 

For a laminar, plane jet, unbounded along the axis z, Schlichting and Bickley [3] ob- 
tained the following velocity distribution: 

u = 0 .4543(K~/v~t la ( l -  th2~), 
v ~ 0 . 5 5 0 3 ( K v / x 2 ) ~ / a ( 2 % ( l  ~ t h ~ )  - -  th%), 

- ~ = 0 . 2 7 5 2 ( K ~ 2 ) ~ / x V %  

where K = J/p is the kinematic jet momentum; J is the momentum flux, which is prescribed con- 
stant for the given jet and proportional to excess pressure under which the jet issues out of 
the slot. 

The approximate computation based on Eqs. (12), (16), and integral relations (14), (15), 
gives a sufficiently good agreement with the experiment. The plane, two-dimensional unbounded 
jet issues more rapidly from the origin, according to the streamwise profile (see Fig. 5), 
than the jet compressed between plates. 

There are actually two zones: the rapid and the slow issue of "thin" fluid jet. 

I. 

2~ 

3. 
4. 
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